平台首页 > 动态汇总 > 机构动态 > top排名揭秘|石家庄教学实力强的专硕考研培训

在线客服

24小时电话咨询

15538202126

top排名揭秘|石家庄教学实力强的专硕考研培训

机构:广州中才新起点 时间:2025-03-30 18:45:10 点击:39

城市规划专业主要培养城市规划、城市生态与环境保护、城市交通、城市市政工程规划、区域规划等的基础理论和基本知识,受到城市规划设计等基本训练,掌握城市规划、城市设计和城市规划管理的基本能力,培养能参与城市社会与经济发展规划、区域规划、城市开发、房地产筹划以及相关政策法规研究等方面工作的城市规划学科高级工程技术人才,以后工作岗位在各级规划管理部门、各级规划设计院、在建筑规划设计公司、房地产企业、规划开发咨询机构,从事项目规划设计、房地产筹划及相关政策法规的咨询和研究工作。

考研培训

top排名揭秘|石家庄教学实力强的专硕考研培训

1.海文考研

2.学研考研

3.启航考研

4.文都教育

5.中公教育

6.聚创教育

7.金程考研

8.社科赛斯

9.顶程考研

10.海天考研

以上机构排名不分先后,仅供参考,请多了解多对比。

考研培训

管理模式
全程督学服务管理,打造严格备考环境
学习管理

1.月度班会;2.辅导答疑;3.全真模拟;

4.晚间自习;5.手机管理;6.学习计划;

7.日测周测;8.每周课表;

教务管理

1.宿舍查寝;2.定期班会;3.资料发放;4.课堂巡查;

5.心理疏导;5.学员档案;6.作业检查;7.家校联动;

精彩活动

生日聚会;消暑福利;节日礼品;团建活动;

考研培训

考研数学复习之向量与线性方程组复习指导

考研数学复习之向量与线性方程组复习指导

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对*,可以看作是对核心内容的扩展。向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过 “秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表出的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

Copyright © sokr.cn 2016-2023 备案号:豫ICP备2023017942号

该文章由用户个人发布,本站只提供信息展示,如有侵权请及时联系下架!

电话咨询 在线客服 预约试听