平台首页 > 动态汇总 > 机构动态 > 廊坊十中小学辅导班排名(近期开班招生)
在线客服记住,记笔记在学习中的角色就是帮助更好的学习的,而不是为了记笔记去记笔记。比如很多学生为了省事去抄别人记下的学习笔记,可以自己抄了才会发现自己根本看不懂,记笔记一定要有针对性的记录,这样才会学习有效果,不然就是浪费学习时间,记笔记可以分为两种笔记,一种就是课前笔记;一种就是课堂笔记,而课后的笔记是对前两种笔记做总结和整合,笔记如果记的好,那么自己复习起来会事半功倍。
1、锐思教育-小初高班课、一对一、艺考文化课、中考复读、高考复读、幼小衔接、中专文化课等,本地多家校区
2、博凯教育-高中辅导,一对一,小班课,全日制
3、优培未来教育-K12全科辅导小学三年级至高三,个性化定制1对1线下辅导
4、领航教育-初中辅导,高中辅导,全科辅导
5、晨露教育-高三冲刺班,高考复读班
以上这些机构排名不分先后,仅供参考!
我们的各科主讲教师,都是在经过层层选拔之后,才能后走上讲台执教。
我们自主研发的教学法经过多年的发展,形成了完整的教育体系。
我们专注补习多年,目前已形成课程中心!
一对一辅导,重难点取舍有度。错题集归纳总结,定期进行错题检测。
为不同学习需求的同学,制定个性课程,滚动开班。
为学员节约来回时间成本。方便有学习需求的学员,就近入读
形成四位一体,为学生提供全方位的帮助。
我们根据课堂内容和学生水平的不同,寓教于乐。
小编为大家整理的《高中数学诱导公式全集》的相关信息供大家参考,希望对大家有帮助!
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
#
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
#
还有一种按照函数类型分象限定正负:
函数类型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
稍后会有专业老师给您回电
Copyright © sokr.cn 2016-2023 备案号:豫ICP备2023017942号
该文章由用户个人发布,本站只提供信息展示,如有侵权请及时联系下架!